Zeta functions of equivalence relations over finite fields
نویسنده
چکیده
We prove the rationality of the generating function associated to the number of equivalence classes of Fqk -points of a constructible equivalence relation defined over the finite field Fq . This is a consequence of the rationality of Weil zeta functions and of first-order formulas, together with the existence of a suitable parameter space for constructible families of constructible sets.
منابع مشابه
Non-Abelian Zeta Functions For Function Fields
In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, we first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a ‘weighted count’ on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these po...
متن کاملConstructions of Non-Abelian Zeta Functions for Curves
In this paper, we initiate a geometrically oriented study of local and global non-abelian zeta functions for curves. This consists of two parts: construction and justification. For the construction, we first use moduli spaces of semi-stable bundles to introduce a new type of zeta functions for curves defined over finite fields. Then, we prove that these new zeta functions are indeed rational an...
متن کاملAsymptotic properties of zeta functions over finite fields
In this paper we study asymptotic properties of families of zeta and L-functions over finite fields. We do it in the context of three main problems: the basic inequality, the Brauer–Siegel type results and the results on distribution of zeroes. We generalize to this abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and (in some cases) for vari...
متن کاملNew Non-Abelian Zeta Functions for Curves over Finite Fields
In this paper, we introduce and study two new types of non-abelian zeta functions for curves over finite fields, which are defined by using (moduli spaces of) semi-stable vector bundles and non-stable bundles. A Riemann-Weil type hypothesis is formulated for zeta functions associated to semi-stable bundles, which we think is more canonical than the other one. All this is motivated by (and hence...
متن کاملZeta Functions from Definable Equivalence Relations
We prove that the theory of the p-adics Qp, together with a set of explicitly given sorts, admits elimination of imaginaries. Using p-adic integration, we deduce the rationality of certain formal zeta functions arising from definable equivalence relations. As an application, we prove rationality results for zeta functions obtained by counting isomorphism classes of irreducible representations o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Finite Fields and Their Applications
دوره 17 شماره
صفحات -
تاریخ انتشار 2011